Something interesting was noted when looking at two nearby storms on 05/06 between 2146Z through about 2205Z. When looking at two thunderstorms which quickly fired up near the MAF radar, OCTANE STD data suggested the storm to the left had stronger divergence aloft. The OCTANE Speed Sandwich also showed these storms were relatively similar in strength with the right storm having slightly stronger shear, but decided to look at GREMLIN and dual-pol radar data for further analysis. It is worth noting that OCTANE data stopped coming in around 2146Z due to a power outage at CIRA. GREMLIN data clearly showed the left storm was weaker depicting much lower reflectivity. This overall aligned with MRMS data, but the GREMLIN data did smooth out higher Z values as expected. 88D radar data was then used to help investigate the two storms after seeing both OCTANE STD and GREMLIN data differ on which storm was more intense. When looking at radar data it became clear that the storm on the right was more intense with a BWER, higher cloud tops, more intense reflectivity core aloft, and stronger STD (wasn’t able to sample true STD because the storm was too close to the radar).
It was very odd to see the left storm had stronger divergence aloft in the OCTANE STD procedure yet all other data suggested the storm on the right was much more organized. There are no loops in this blog, but the weaker left storm was a left mover while the stronger thunderstorm was more of a right mover. Could this have played a role in the OCTANE STD data suggesting the left storm was more organized?
A severe thunderstorm warning was issued on the right storm before these comparisons were made as it was evident a supercell was developing. OCTANE/GREMLIN aided in quickly seeing where CI was occurring and which storms were intensifying quickly. However, using the satellite products alone to issue warnings would have been difficult. This could be due to not being familiar with what thresholds forecasters need to be looking for in OCTANE or GREMLIN in order to issue a warning. If I were in a forecast office with radar holes or beam blockage, these new satellite products would still be very helpful to interrogate storms. OCTANE/GREMLIN provided better confidence on what storms to focus on and paired well with 88D radar data for warning operations. It would be fascinating to see how this works in a location where there is beam blockage or radar holes.

When looking at this 4 panel OCTANE STD suggests the cell on the left has stronger divergence aloft. The speed sandwich (top left) suggests the storms are relatively similar in intensity though slightly stronger shear was evident for the right storm.
The two storms on the right are the ones of interest. Ignore the far left storm. GREMLIN data clearly shows that of the storms in question, the one on the right is more intense as reflectivity values are much higher. OCTANE data went out at 2146Z so timing between products is off slightly. GREMLIN data compare to MRMS data as both showed the storm on left being less organized. MRMS was a lot easier to read though due to less smoothing.

88D Radar data clearly shows the storm on the right is more organized with a BWER, higher cloud tops, much stronger reflectivity core aloft, and stronger STD (true STD could not be sampled as the storm was very close to the radar).
- Ricky Bobby